About division by 1 Alain Lascoux

نویسنده

  • Alain Lascoux
چکیده

The Euclidean division of two formal series in one variable produces a sequence of series that we obtain explicitly, remarking that the case where one of the two initial series is 1 is sufficiently generic. As an application, we define a Wronskian of symmetric functions. The Euclidean division of two polynomials P (z), Q(z), in one variable z, of consecutive degrees, produces a sequence of linear factors (the successive quotients), and a sequence of successive remainders, both families being symmetric functions in the roots of P and Q separately. Euclidean division can also be applied to formal series in z, but it never stops in the generic case, leaving time enough to observe the law of the coefficients appearing in the process. Moreover, since the quotient of two formal series is also a formal series, it does not make much difference if we suppose that one of the two initial series is 1. This renders the division of series simpler than that of polynomials; in fact the latter could be obtained from the former. By formal series we mean a unitary series f(z) = 1 + c1z + c2z 2 + · · · . We shall moreover formally factorize it f(z) = σz(A ) := ∏ a∈A (1 − za)−1 = ∞ ∑ i=0 z Si(A ) , ∗Written during the conference Applications of the Macdonald Polynomials, at the Newton Institute in April 2001. the electronic journal of combinatorics 8 (2001), #N8 1 ha l-0 06 22 72 8, v er si on 1 12 S ep 2 01 1 Author manuscript, published in "Electronic Journal of Combinatorics 8, 1 (2001) 10pp."

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An edge-weighted hook formula for labelled trees

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

Generalization of Scott’s Permanent Identity

Let x = {x1, . . . , xr}, y = {y1, . . . , yn}, z = {z1, . . . , zn} be three sets of indeterminates. We give the value of the determinant ∣ ∣ ∣ ∣ ∣ ∏ x∈x (xy − z) ∣ ∣ ∣ ∣ ∣ y∈y,z∈z when specializing y and z to the set of roots of y − 1 and z − ξ, respectively. In the case where r = 2 and x = {1, 1} the determinant ∣ ∣(y− z) ∣ ∣ y∈y,z∈z factorizes into the determinant of the Cauchy matrix [(y −...

متن کامل

Semi-skyline augmented fillings and non-symmetric Cauchy kernels for stair-type shapes

Using an analogue of the Robinson-Schensted-Knuth (RSK) algorithm for semi-skyline augmented fillings, due to Sarah Mason, we exhibit expansions of non-symmetric Cauchy kernels ∏ (i,j)∈η(1 − xiyj) −1, where the product is over all cell-coordinates (i, j) of the stair-type partition shape η, consisting of the cells in a NW-SE diagonal of a rectangle diagram and below it, containing the biggest s...

متن کامل

Addition of ± 1 : Application to Arithmetic

Abstract We show that some classical identities about multiplicative functions, and the Riemann zeta-function, may conveniently be interpreted in terms of the addition of ±1 to some alphabets. Résumé Nous montrons que des identités classiques concernant des fonctions multiplicatives de la théorie des nombres, et la fonction zeta de Riemann, s’interprètent commodément en terme de l’opération : “...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011